The Nutrition-Sensitive Food Environment Index: A Comprehensive Approach to Assessing Food Environments in Association with Health Risks for Policy Decision Making

Authors

  • Tosin H. Akingbemisilu International Center for Tropical Agriculture (CIAT)
  • Irmgard Jordan Bioversity International
  • Robert Asiimwe Justus Liebig University Giessen
  • Sam Bodjrenou International Center for Tropical Agriculture (CIAT)
  • Deborah Nabuuma Bioversity International
  • Nicanor Odongo International Center for Tropical Agriculture (CIAT)
  • Kevin O. Onyango International Center for Tropical Agriculture (CIAT)
  • Ermias Teferi International Center for Tropical Agriculture (CIAT)
  • Casey Tokeshi International Center for Tropical Agriculture (CIAT)
  • Mark Lundy International Center for Tropical Agriculture (CIAT)
  • Céline Termote Bioversity International

DOI:

https://doi.org/10.55845/jos-2025-1116

Keywords:

Food Environment, Index, Dietary Diversity, Sanitation, Malnutrition Risk, Public Health, Spatial Analysis, Machine Learning

Abstract

Food environment indices often focus on food affordability, overlooking public health aspects. This study introduces a Nutrition-Sensitive Food-Environment Index (N-FEI) that assesses the interplay between food diversity, accessibility, and water and sanitation facilities linked to malnutrition risks.

Data from 17,294 food vendors collected between 2020 and 2023 in six countries were used. Sensitivity analyses, Monte Carlo simulations, and variance decomposition were conducted to validate the index’s robustness. The machine learning algorithm XGBoost was used to predict health risks from Demographic and Health Surveys (DHS) data, integrated into food environment data through geospatial techniques.

The index model is scalable and adaptable for global use. Integrating comprehensive food environment assessments at the administrative census level is recommended to reduce estimation biases and to enhance the policymaking process.

Future research should examine using the index for monitoring and evaluating food system transformations, tracking changes in food environments and related health outcomes.

References

Ahmed, S. (2020). Food Environment Measurements ProToolBox: ProColor, ProDes, ProPhen. A4NH, Montana. https://a4nh.cgiar.org/files/2020/03/FoodEnvironmentTools-Selena-Ahmed.pdf

Ahmed, S., Kennedy, G., Crum, J., Vogliano, C., McClung, S., & Anderson, C. (2021). Suitability of Data-Collection Methods, Tools, and Metrics for Evaluating Market Food Environments in Low- and Middle-Income Countries. Foods, 10(11), 2728. https://doi.org/10.3390/foods10112728

Ahmed, S., Shanks, C. B., Dupuis, V., & Pierre, M. (2019). Advancing healthy and sustainable food environments: The Flathead Reservation case study. UNSCN Nutrition, 44, 38–45.

Anne Bossuyt, A. B. (2019). Moving towards nutrition-sensitive agriculture strategies and programming in Ethiopia. In S. Fan, S. Yosef, & R. Pandya-Lorch (Eds.), Agriculture for improved nutrition: Seizing the momentum (1st ed., pp. 165–177). CAB International. https://doi.org/10.1079/9781786399311.0165

Azur, M. J., Stuart, E. A., Frangakis, C., & Leaf, P. J. (2011). Multiple imputation by chained equations: What is it and how does it work? International Journal of Methods in Psychiatric Research, 20(1), 40–49. https://doi.org/10.1002/mpr.329

Baker, K., Burd, L., & Figueroa, R. (2024). Consumer nutrition environment measurements for nutrient-dense food availability and food sustainability: A scoping review. Archives of Public Health, 82(1), 7. https://doi.org/10.1186/s13690-023-01231-y

Baker, P., & Friel, S. (2016). Food systems transformations, ultra-processed food markets and the nutrition transition in Asia. Globalization and Health, 12(1). https://doi.org/10.1186/s12992-016-0223-3

Bivoltsis, A., Cervigni, E., Trapp, G., Knuiman, M., Hooper, P., & Ambrosini, G. L. (2018). Food environments and dietary intakes among adults: Does the type of spatial exposure measurement matter? A systematic review. International Journal of Health Geographics, 17(1), 19. https://doi.org/10.1186/s12942-018-0139-7

Chege, C. G. K., Wanyama, R., Lundy, M., Nguru, W., & Jäger, M. (2021). Does Retail Food Diversity in Urban Food Environments Influence Consumer Diets? Sustainability, 13(14), 7666. https://doi.org/10.3390/su13147666

County Health Rankings & Roadmaps. (2024). Food Environment Index. County Health Rankings & Roadmaps. https://www.countyhealthrankings.org/health-data/health-factors/health-behaviors/diet-and-exercise/food-environment-index

Custodio, E., Kayikatire, F., Fortin, S., Thomas, A., Kameli, Y., Nkunzimana, T., Ndiaye, B., & Martin‐Prevel, Y. (2019). Minimum dietary diversity among women of reproductive age in urban Burkina Faso. Maternal & Child Nutrition, 16(2). https://doi.org/10.1111/mcn.12897

Demmler, K. M., Klasen, S., Nzuma, J. M., & Qaim, M. (2017). Supermarket purchase contributes to nutrition-related non-communicable diseases in urban Kenya. PloS One, 12(9), e0185148. https://doi.org/10.1371/journal.pone.0185148

Demmler, K. M., van der Steen, S., Trevenen-Jones, A., & de Kanter, E. (2025). Food Environments and Diet Quality Among Vendors and Consumers in Five Traditional Urban Markets in Kenya. Nutrients, 17(1), Article 1. https://doi.org/10.3390/nu17010116

Downs, S. M., Ahmed, S., Fanzo, J., & Herforth, A. (2020). Food Environment Typology: Advancing an Expanded Definition, Framework, and Methodological Approach for Improved Characterization of Wild, Cultivated, and Built Food Environments toward Sustainable Diets. Foods, 9(4), 532. https://doi.org/10.3390/foods9040532

Estruch, R., Martínez-González, M. A., Corella, D., Salas-Salvadó, J., Ruiz-Gutiérrez, V., Covas, M. I., Fiol, M., Gómez-Gracia, E., López-Sabater, M. C., Vinyoles, E., Arós, F., Conde, M., Lahoz, C., Lapetra, J., Sáez, G., Ros, E., & PREDIMED Study Investigators. (2006). Effects of a Mediterranean-style diet on cardiovascular risk factors: A randomized trial. Annals of Internal Medicine, 145(1), 1–11. https://doi.org/10.7326/0003-4819-145-1-200607040-00004

Fanzo, J., Bellows, A. L., Spiker, M. L., Thorne-Lyman, A. L., & Bloem, M. W. (2021). The importance of food systems and the environment for nutrition. The American Journal of Clinical Nutrition, 113(1), 7–16. https://doi.org/10.1093/ajcn/nqaa313

Fanzo, J., Haddad, L., McLaren, R., Marshall, Q., Davis, C., Herforth, A., Jones, A., Beal, T., Tschirley, D., Bellows, A., Miachon, L., Gu, Y., Bloem, M., & Kapuria, A. (2020). The Food Systems Dashboard is a new tool to inform better food policy. Nature Food, 1(5), Article 5. https://doi.org/10.1038/s43016-020-0077-y

FAO. (2019). Minimum Dietary Diversity for Women (MDD-W) Indicator. Food and Agriculture Organisation of the United Nations. https://openknowledge.fao.org/server/api/core/bitstreams/ff8308fa-fe53-4e0a-a5c7-8b7f2c912f2f/content

FAO. (2021). MINIMUM DIETARY DIVERSITY FOR WOMEN: An updated guide to measurement - from collection to action. FOOD & AGRICULTURE ORG. https://www.fao.org/3/cb3434en/cb3434en.pdf

GAIN, The Columbia Climate School, Cornell University of Agriculture and Life Sciences, & FAO. (2023). FSCI — The Food Systems Countdown Initiative. The Food Systems Countdown Initiative. https://www.foodcountdown.org/

Geda, N. R., Wondimeneh, Y., & Amsalu, A. (2024). The Food and Nutrition Policy Environment and Drivers of Changes in Key Food System Outcomes in Ethiopia. Journal of Agricultural Science, 16(6), 53. https://doi.org/10.5539/jas.v16n6p53

GeoPandas Developers. (2024). GeoPandas 0.14.3 (Version v0.14.3) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.3946761

Global Diet Quality Project. (2025). Global Diet Quality Project. https://www.dietquality.org/tools

Glover, B., Mao, L., Hu, Y., & Zhang, J. (2022). Enhancing the Retail Food Environment Index (RFEI) with Neighborhood Commuting Patterns: A Hybrid Human−Environment Measure. International Journal of Environmental Research and Public Health, 19(17), 10798. https://doi.org/10.3390/ijerph191710798

Herforth, A. W., Ballard, T., & Rzepa, A. (2024). Development of the Diet Quality Questionnaire for Measurement of Dietary Diversity and Other Diet Quality Indicators. Current Developments in Nutrition, 8(8), 103798. https://doi.org/10.1016/j.cdnut.2024.103798

Hjertholm, K. G., Holmboe-Ottesen, G., Iversen, P. O., Mdala, I., Munthali, A., Maleta, K., Shi, Z., Ferguson, E., & Kamudoni, P. (2019). Seasonality in associations between dietary diversity scores and nutrient adequacy ratios among pregnant women in rural Malawi—A cross-sectional study. Food & Nutrition Research, 63. https://doi.org/10.29219/fnr.v63.2712

HLPE. (2017). Nutrition and food systems. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security (HLPE Reports). http://www.fao.org/3/i7846e/i7846e.pdf

ICF. (2017). Demographic and Health Surveys (various) [Kenya, Benin, Uganda, Cote D’Ivoire, Ethiopia] [Dataset].

Krawinkel, M. B. (2014). Global Healthy Diet Approach to Nutrition. Development, 57(2), 234–239.

Lehmann, T. H. (2024). Learning to measure the area of circles. Research in Mathematics Education, 1–27. https://doi.org/10.1080/14794802.2024.2304329

Ly, C., Essman, M., Zimmer, C., & Ng, S. W. (2020). Developing an index to estimate the association between the food environment and CVD mortality rates. Health & Place, 66, 102469. https://doi.org/10.1016/j.healthplace.2020.102469

Malik, V. S., & Hu, F. B. (2022). The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases. Nature Reviews. Endocrinology, 18(4), 205–218. https://doi.org/10.1038/s41574-021-00627-6

McDermott, J., Aït-Aïssa, M., Morel, J., & Rapando, N. (2013). Agriculture and household nutrition security—Development practice and research needs. Food Security, 5(5), 667–678. https://doi.org/10.1007/s12571-013-0292-6

Monteiro, C., Cannon, G., Lawrence, M., Costa Louzada, M., & Pereira Machado, P. (2019). Ultra-processed foods, diet quality, and health using the NOVA classification system. FAO. http://www.fao.org/3/ca5644en/ca5644en.pdf

Ni Mhurchu, C., Vandevijvere, S., Waterlander, W., Thornton, L. E., Kelly, B., Cameron, A. J., Snowdon, W., Swinburn, B., & Informas. (2013). Monitoring the availability of healthy and unhealthy foods and non-alcoholic beverages in community and consumer retail food environments globally. Obesity Reviews, 14(S1), 108–119. https://doi.org/10.1111/obr.12080

North Jersey Health Collaborative. (2024). Health Matters—Food Environment Index. https://www.njhealthmatters.org/indicators/index/view?indicatorId=2362&localeId=1841

Pineda, E., Stockton, J., & Mindell, J. S. (2024). The Retail Food Environment Index and its association with dietary patterns, body mass index, and socioeconomic position: A multilevel assessment in Mexico. PLOS Global Public Health, 4(10), e0003819. https://doi.org/10.1371/journal.pgph.0003819

Sadler, C. R., Grassby, T., Hart, K., Raats, M., Sokolović, M., & Timotijevic, L. (2021). Processed food classification: Conceptualisation and challenges. Trends in Food Science & Technology, 112, 149–162. https://doi.org/10.1016/j.tifs.2021.02.059

Stockholm International Water Institute. (2024, May 16). Sanitation in public spaces. SIWI - Leading Expert in Water Governance. https://siwi.org/sanitation-in-public-spaces/

Swinburn, B., Vandevijvere, S., Kraak, V., Sacks, G., Snowdon, W., Hawkes, C., Barquera, S., Friel, S., Kelly, B., Kumanyika, S., L’Abbé, M., Lee, A., Lobstein, T., Ma, J., Macmullan, J., Mohan, S., Monteiro, C., Neal, B., Rayner, M., … INFORMAS. (2013). Monitoring and benchmarking government policies and actions to improve the healthiness of food environments: A proposed Government Healthy Food Environment Policy Index. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity, 14 Suppl 1, 24–37. https://doi.org/10.1111/obr.12073

Tudisca, V., Valente, A., Castellani, T., Stahl, T., Sandu, P., Dulf, D., Spitters, H., Van de Goor, I., Radl-Karimi, C., Syed, M. A., Loncarevic, N., Lau, C. J., Roelofs, S., Bertram, M., Edwards, N., Aro, A. R., Aro, A. R., Bertram, M., Radl-Karimi, C., … on behalf of the REPOPA Consortium. (2018). Development of measurable indicators to enhance public health evidence-informed policy-making. Health Research Policy and Systems, 16(1), 47. https://doi.org/10.1186/s12961-018-0323-z

Turner, C., Aggarwal, A., Walls, H., Herforth, A., Drewnowski, A., Coates, J., Kalamatianou, S., & Kadiyala, S. (2018). Concepts and critical perspectives for food environment research: A global framework with implications for action in low- and middle-income countries. Global Food Security, 18, 93–101. https://doi.org/10.1016/j.gfs.2018.08.003

UN. (2010). The Human Right to Water and Sanitation—Fact sheet. United Nations. https://www.ohchr.org/sites/default/files/Documents/Publications/FactSheet35en.pdf

UNICEF. (1990). Strategy for improved nutrition of children and women in developing countries. Unicef Policy Review. https://digitallibrary.un.org/record/227230?v=pdf

UNICEF. (2021, November). UNICEF Conceptual Framework on maternal and child nutrition. UNICEF. New York. https://www.unicef.org/media/113291/file/UNICEF%20Conceptual%20Framework.pdf

UNICEF. (2025). UNICEF Framework for Child Nutrition and Climate Action. https://knowledge.unicef.org/resource/unicef-framework-child-nutrition-and-climate-action

WHO. (2022a). Food safety is everyone’s business in traditional food markets. https://www.who.int/publications-detail-redirect/WHO-HEP-NFS-AFS-2022.6

WHO. (2022b). SHIFT Framework launch: Shifting to equitable health and nutrition through food environment transformations. World Health Organization. https://www.who.int/news-room/events/detail/2022/06/10/default-calendar/shift-framework-launch-shifting-to-equitable-health-and-nutrition-through-food-environment-transformations

Ali, Z. H., & Burhan, A. M. (2023). Hybrid machine learning approach for construction cost estimation: An evaluation of extreme gradient boosting model. Asian Journal of Civil Engineering, 24(7), 2427–2442. https://doi.org/10.1007/s42107-023-00651-z

Azur, M. J., Stuart, E. A., Frangakis, C., & Leaf, P. J. (2011). Multiple imputation by chained equations: What is it and how does it work? International Journal of Methods in Psychiatric Research, 20(1), 40–49. https://doi.org/10.1002/mpr.329

Cano-Berlanga, S., Giménez-Gómez, J.-M., & Vilella, C. (2019). Chapter 9—Quantitative game theory applied to economic problems. In H. D. Vinod & C. R. Rao (Eds.), Handbook of Statistics (Vol. 41, pp. 281–307). Elsevier. https://doi.org/10.1016/bs.host.2018.11.003

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785

Delaney, J. A., & Seeger, J. D. (2013). Sensitivity Analysis. In Developing a Protocol for Observational Comparative Effectiveness Research: A User’s Guide. Agency for Healthcare Research and Quality (US). https://www.ncbi.nlm.nih.gov/books/NBK126178/

DHS Program. (2024). The DHS Program—Quality information to plan, monitor and improve population, health, and nutrition programs. https://dhsprogram.com/

Durap, A. (2023). A comparative analysis of machine learning algorithms for predicting wave runup. Anthropocene Coasts, 6(1), 17. https://doi.org/10.1007/s44218-023-00033-7

Floares, A. G., Ferisgan, M., Onita, D., Ciuparu, A., Mensah, G. A., & Manolache, F. B. (2017). The Smallest Sample Size for the Desired Diagnosis Accuracy. International Journal of Oncology and Cancer Therapy, 2, 13–19.

GeoPandas Developers. (2024). GeoPandas 0.14.3 (Version v0.14.3) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.3946761

ICF. (2017). Demographic and Health Surveys (various) [Kenya, Benin, Uganda, Cote D’Ivoire, Ethiopia] [Dataset].

ICF. (2018). Standard Recode Manual for DHS-7. USAID | DHS Program. https://dhsprogram.com/pubs/pdf/DHSG4/Recode7_DHS_10Sep2018_DHSG4.pdf

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., & Lee, S.-I. (2020). From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence, 2(1), 56–67. https://doi.org/10.1038/s42256-019-0138-9

Mathur, M. B., & VanderWeele, T. J. (2020). Sensitivity analysis for publication bias in meta-analyses. Journal of the Royal Statistical Society. Series C, Applied Statistics, 69(5), 1091–1119. https://doi.org/10.1111/rssc.12440

M’hamdi, O., Takács, S., Palotás, G., Ilahy, R., Helyes, L., & Pék, Z. (2024). A Comparative Analysis of XGBoost and Neural Network Models for Predicting Some Tomato Fruit Quality Traits from Environmental and Meteorological Data. Plants, 13(5), Article 5. https://doi.org/10.3390/plants13050746

Narbaev, T., Hazir, Ö., Khamitova, B., & Talgat, S. (2024). A machine learning study to improve the reliability of project cost estimates. International Journal of Production Research, 62(12), 4372–4388. https://doi.org/10.1080/00207543.2023.2262051

Nardon, M., & Pianca, P. (2008). Simulating a Generalized Gaussian Noise with Shape Parameter 1/2. In C. Perna & M. Sibillo (Eds.), Mathematical and Statistical Methods in Insurance and Finance (pp. 173–180). Springer Milan. https://doi.org/10.1007/978-88-470-0704-8_22

Pollard, J. M. (1978). Monte Carlo Methods for Index Computation (mod p). Mathematics of Computation, 32(143), 918. https://doi.org/10.2307/2006496

Prieur, C., & Tarantola, S. (2017). Variance-Based Sensitivity Analysis: Theory and Estimation Algorithms. In R. Ghanem, D. Higdon, & H. Owhadi (Eds.), Handbook of Uncertainty Quantification (pp. 1217–1239). Springer International Publishing. https://doi.org/10.1007/978-3-319-12385-1_35

Razavi, S., Jakeman, A., Saltelli, A., Prieur, C., Iooss, B., Borgonovo, E., Plischke, E., Lo Piano, S., Iwanaga, T., Becker, W., Tarantola, S., Guillaume, J. H. A., Jakeman, J., Gupta, H., Melillo, N., Rabitti, G., Chabridon, V., Duan, Q., Sun, X., … Maier, H. R. (2021). The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support. Environmental Modelling & Software, 137, 104954. https://doi.org/10.1016/j.envsoft.2020.104954

Rezvani, N., & Bolduc, D. L. (2014). Monte Carlo Analysis. In Encyclopedia of Toxicology (pp. 393–396). Elsevier. https://doi.org/10.1016/B978-0-12-386454-3.00631-X

Saisana, M., Saltelli, A., & Tarantola, S. (2005). Uncertainty and Sensitivity Analysis Techniques as Tools for the Quality Assessment of Composite Indicators. Journal of the Royal Statistical Society Series A: Statistics in Society, 168(2), 307–323. https://doi.org/10.1111/j.1467-985X.2005.00350.x

scikit-learn developers. (2024). MinMaxScaler. Scikit-Learn. https://scikit-learn/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

Tawhid, A., Teotia, T., & Elmiligi, H. (2021). Machine learning for optimizing healthcare resources. In Machine Learning, Big Data, and IoT for Medical Informatics (pp. 215–239). Elsevier. https://doi.org/10.1016/B978-0-12-821777-1.00020-3

USAID. (2013). Guidelines on the use of DHS GPS Data (8). United States Agency for International Development.

Wang, Y., Pan, Z., Zheng, J., Qian, L., & Li, M. (2019). A hybrid ensemble method for pulsar candidate classification. Astrophysics and Space Science, 364(8), 139. https://doi.org/10.1007/s10509-019-3602-4

Yin, S., & Zhu, M. (2019). Sensitivity analysis based on variance decomposition for factors in bat algorithm. Engineering Computations, 36(5), 1608–1625. https://doi.org/10.1108/EC-09-2018-0402

Downloads

Published

06-06-2025

Issue

Section

Research Articles

How to Cite

Akingbemisilu, T. H. ., Jordan, I., Asiimwe, R., Bodjrenou, S. ., Nabuuma, D., Odongo, N., Onyango, K. O. ., Teferi, E., Tokeshi, C. ., Lundy, M., & Termote, C. (2025). The Nutrition-Sensitive Food Environment Index: A Comprehensive Approach to Assessing Food Environments in Association with Health Risks for Policy Decision Making. Journal of Sustainability, 1(1). https://doi.org/10.55845/jos-2025-1116

Funding data