Decoupling Resource Consumption from Economic Growth: A Comparative Study of China, Europe, and the United States

Authors

  • Miguel A. Ariño IESE Business School Universidad de Navarra
  • Heming Wang Northeastern University

DOI:

https://doi.org/10.55845/jos-2025-1251

Keywords:

Decoupling Analysis, Decoupling Indicator, Resource Use, Economic Growth, Sustainability

Abstract

This article presents a comprehensive comparative analysis of the relationship between economic growth and resource consumption, with a focus on the degree of decoupling in three major global economies: China, Europe, and the United States. As the global community faces pressing sustainability and environmental challenges, understanding how economic development intersects with resource utilisation in these regions has become increasingly critical. Previous research on decoupling has largely assumed positive economic growth; however, some countries have experienced periods of negative growth over the last two decades. This study extends decoupling criteria to incorporate such scenarios. The analysis begins with an examination of the interplay between economic growth, population growth, and domestic material consumption, followed by a detailed decoupling assessment. Results indicate that while China has made significant strides in improving resource efficiency over the past decade, its performance still lags behind that of the United States and Europe due to its stage of development. Nevertheless, China has demonstrated the most significant improvement in decoupling economic growth from material consumption, particularly during the second decade of the study period. Over the past 20 years, China has made notable advances in decoupling fossil fuel and metallic minerals consumption. By contrast, the United States (while showing the highest overall level of decoupling) has experienced a decline in performance, especially with respect to metallic and non-metallic minerals. Europe, meanwhile, has maintained a relatively stable decoupling trend.

Downloads

Download data is not yet available.

References

Chen, B., Yang, Q., Li, J.S., Chen, G.Q., 2017. Decoupling analysis on energy consumption, embodied GHG emissions and economic growth — The case study of Macao. Renewable and Sustainable Energy Reviews 67, 662–672. https://doi.org/10.1016/j.rser.2016.09.027

Chen, J., Wang, P., Cui, L., Huang, S., Song, M., 2018. Decomposition and decoupling analysis of CO2 emissions in OECD. Applied Energy 231, 937–950. https://doi.org/10.1016/j.apenergy.2018.09.179

CSIRO, 2024. Global Material Flows Database.

Dong, B., Zhang, M., Mu, H., Su, X., 2016. Study on decoupling analysis between energy consumption and economic growth in Liaoning Province. Energy Policy 97, 414–420. https://doi.org/10.1016/j.enpol.2016.07.054

Hertwich, E.G., 2021. Increased carbon footprint of materials production driven by rise in investments. Nat Geosci 14, 151–155. https://doi.org/10.1038/s41561-021-00690-8

Jalles, J.T., 2022. Emissions and Output: Evidence of Decoupling from Brazil. The Journal of Developing Areas 56, 43–64.

Jia, H., Li, T., Wang, A., Liu, G., Guo, X., 2021. Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective. Resour Policy 74, 102448. https://doi.org/10.1016/j.resourpol.2021.102448

Jiang, J., Zhao, T., Wang, J., 2021. Decoupling analysis and scenario prediction of agricultural CO2 emissions: An empirical analysis of 30 provinces in China. Journal of Cleaner Production 320, 128798. https://doi.org/10.1016/j.jclepro.2021.128798

Krausmann, F., Wiedenhofer, D., Lauk, C., Haas, W., Tanikawa, H., Fishman, T., Miatto, A., Schandl, H., Haberl, H., 2017. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proc. Natl. Acad. Sci. U. S. A. 114, 1880–1885. https://doi.org/10.1073/pnas.1613773114

Lenzen, M., Moran, D., Kanemoto, K., Foran, B., Lobefaro, L., Geschke, A., 2012. International trade drives biodiversity threats in developing nations. Nature 486, 109–112. https://doi.org/10.1038/nature11145

Li, X., Chen, X., Shi, H., Jiang, Q., Mao, R., Kang, C., Chen, W.-Q., Zhu, J., 2024. Nuanced strategies for material efficiency: Addressing developmental heterogeneities and socio-economic shifts. Resources, Conservation and Recycling 210, 107823. https://doi.org/10.1016/j.resconrec.2024.107823

Liang, S., Liu, Z., Crawford-Brown, D., Wang, Y., Xu, M., 2014. Decoupling analysis and socioeconomic drivers of environmental pressure in China. Environmental Science and Technology 48, 1103–1113. https://doi.org/10.1021/es4042429

Liu, X., Wu, K., Wagner, F., Zhang, Shaohui, Xu, M., Liu, Y., Wang, X., Fang, Y., Zhang, Silu, Dai, H., 2025. Pathways to achieve the dual targets of carbon neutrality and air quality in Southern China. Front. Eng. Manag. 12, 238–254. https://doi.org/10.1007/s42524-025-4043-0

Lu, Y., Schandl, H., Wang, H., Zhu, J., 2024. China’s pathway towards a net zero and circular economy: A model-based scenario analysis. Resources, Conservation and Recycling 204, 107514. https://doi.org/10.1016/j.resconrec.2024.107514

Lu, Y., Zhang, Y., Cao, X., Wang, C., Wang, Y., Zhang, M., Ferrier, R.C., Jenkins, A., Yuan, J., Bailey, M.J., Chen, D., Tian, H., Li, H., von Weizsaecker, E.U., Zhang, Z., von Weizsäcker, E.U., Zhang, Z., 2019. Forty years of reform and opening up: China’s progress toward a sustainable path. Sci Adv 5, eaau9413. https://doi.org/10.1126/sciadv.aau9413

Lu, Z., Wang, H., Yue, Q., 2015. Decoupling Analysis of the Environmental Mountain-with Case Studies from China. Journal of Industrial Ecology 19, 1082–1090. https://doi.org/10.1111/jiec.12226

Ma, F., Wang, H., Tzachor, A., Hidalgo, C.A., Schandl, H., Zhang, Y., Zhang, J., Chen, W.-Q., Zhao, Y., Zhu, Y.-G., Fu, B., 2025. The disparities and development trajectories of nations in achieving the sustainable development goals. Nat Commun 16, 1107. https://doi.org/10.1038/s41467-025-56076-6

Pereira, H.M., Martins, I.S., Rosa, I.M.D., Kim, H., Leadley, P., Popp, A., van Vuuren, D.P., Hurtt, G., Quoss, L., Arneth, A., Baisero, D., Bakkenes, M., Chaplin-Kramer, R., Chini, L., Di Marco, M., Ferrier, S., Fujimori, S., Guerra, C.A., Harfoot, M., Harwood, T.D., Hasegawa, T., Haverd, V., Havlík, P., Hellweg, S., Hilbers, J.P., Hill, S.L.L., Hirata, A., Hoskins, A.J., Humpenöder, F., Janse, J.H., Jetz, W., Johnson, J.A., Krause, A., Leclère, D., Matsui, T., Meijer, J.R., Merow, C., Obersteiner, M., Ohashi, H., De Palma, A., Poulter, B., Purvis, A., Quesada, B., Rondinini, C., Schipper, A.M., Settele, J., Sharp, R., Stehfest, E., Strassburg, B.B.N., Takahashi, K., Talluto, M.V., Thuiller, W., Titeux, N., Visconti, P., Ware, C., Wolf, F., Alkemade, R., 2024. Global trends and scenarios for terrestrial biodiversity and ecosystem services from 1900 to 2050. Science 384, 458–465. https://doi.org/10.1126/science.adn3441

Schandl, H., Fischer-Kowalski, M., West, J., Giljum, S., Dittrich, M., Eisenmenger, N., Geschke, A., Lieber, M., Wieland, H., Schaffartzik, A., Krausmann, F., Gierlinger, S., Hosking, K., Lenzen, M., Tanikawa, H., Miatto, A., Fishman, T., 2018. Global Material Flows and Resource Productivity: Forty Years of Evidence. J. Ind. Ecol. 22, 827–838. https://doi.org/10.1111/jiec.12626

Schandl, H., Marcos-Martinez, R., West, J., Miatto, A., Lutter, S., Lieber, M., Giljum, S., Lenzen, M., Li, M., Wang, H., Tanikawa, H., Krausmann, F., Eisenmenger, N., Fischer-Kowalski, M., 2024. Global material flows and resource productivity: The 2024 update. Journal of Industrial Ecology n/a. https://doi.org/10.1111/jiec.13593

Song, L., Wang, P., Xiang, K., Chen, W.Q., 2020. Regional disparities in decoupling economic growth and steel stocks: Forty years of provincial evidence in China. J. Environ. Manage. 271, 111035. https://doi.org/10.1016/j.jenvman.2020.111035

Sun, L., Du, C., Li, Z., Fujii, M., Dou, Y., Ohnishi, S., Maki, S., Dong, H., Dong, L., 2025. Urban-industrial symbiosis practices in Tokyo Metropolis and the indication of carbon emissions reduction and environmental benefits. Cities 161, 105840. https://doi.org/10.1016/j.cities.2025.105840

Tian, Y., Ruth, M., Zhu, D., 2016. Using the IPAT identity and decoupling analysis to estimate water footprint variations for five major food crops in China from 1978 to 2010. Environment, Development and Sustainability 19, 2355–2375. https://doi.org/10.1007/s10668-016-9860-1

Tzachor, A., Wang, H., Richards, C.E., 2024. Addressing the excessive water consumption of materials manufacturing. Nature Water 2, 4–7. https://doi.org/10.1038/s44221-023-00179-1

UNEP, I., 2014. Decoupling 2—technologies, opportunities and policy options. Nairobi, Kenya.

UNEP-IRP, 2024. Global Resources Outlook 2024: Bend the trend-Pathways to a liveable planet as resource use spikes. United Nations Environment Programme.

UNEP-IRP, 2019. Global Resource Outlook 2019: Natural Resources for the Future We Want. Nairobi, Kenya.

United Nations, 2023. The Sustainable Development Goals Report 2023.

United Nations, 2015. Transforming Our World: The 2030 Agenda for Sustainable Development.

UNSD, 2024. UNdata [WWW Document]. URL https://data.un.org (accessed 12.22.24).

Wang, H., Hashimoto, S., Yue, Q., Moriguchi, Y., Lu, Z., 2013. Decoupling Analysis of Four Selected Countries. Journal of Industrial Ecology 17, 618–629. https://doi.org/10.1111/jiec.12005

Wang, H., Wang, P., Zhang, X., Chen, W.-Q., Tzachor, A., Fishman, T., Schandl, H., Acuto, M., Yang, Y., Lu, Y., Böcher, C., Ma, F., Zhang, C., Yue, Q., Du, T., Liu, J., Zhu, Y.-G., 2024. Substantial increase in China’s manufactured sand supply since 2010. Nat. Geosci. 1–4. https://doi.org/10.1038/s41561-024-01501-6

Wang, H., Wang, X., Zhang, X., Liu, G., Chen, W.Q., Chen, S., Du, T., Shi, L., 2022. The coupling between material footprint and economic growth in the “ Belt and Road ” countries. J Clean Prod 359, 132110. https://doi.org/10.1016/j.jclepro.2022.132110

Wang, Q., Jiang, R., Zhan, L., 2019. Is decoupling economic growth from fuel consumption possible in developing countries? – A comparison of China and India. Journal of Cleaner Production 229, 806–817. https://doi.org/10.1016/j.jclepro.2019.04.403

Wang, Q., Zhao, M., Li, R., Su, M., 2018. Decomposition and decoupling analysis of carbon emissions from economic growth: A comparative study of China and the United States. Journal of Cleaner Production 197, 178–184. https://doi.org/10.1016/j.jclepro.2018.05.285

Wang, W., Liu, Y., Feng, K., Chen, W.-Q., 2024. Spatiotemporal dynamics of city-level WEEE generation from different sources in China. Front. Eng. Manag. 11, 181–193. https://doi.org/10.1007/s42524-024-0310-8

Wang, Y., Wang, X., Wang, H., Zhang, X., Zhong, Q., Yue, Q., Du, T., Liang, S., 2022. Human health and ecosystem impacts of China ’ s resource extraction. Science of the Total Environment 847, 157465. https://doi.org/10.1016/j.scitotenv.2022.157465

Wang, Z., Cao, X., Ren, X., 2024. Green development and economic resilience: Evidence from Chinese resource-based cities. Front. Eng. Manag. 11, 194–206. https://doi.org/10.1007/s42524-024-0307-3

Wiedmann, T., Lenzen, M., 2018. Environmental and social footprints of international trade. Nature Geoscience 11, 314–321. https://doi.org/10.1038/s41561-018-0113-9

Wiedmann, T.O., Schandl, H., Lenzen, M., Moran, D., Suh, S., West, J., Kanemoto, K., 2015. The material footprint of nations. P Natl Acad Sci Usa 112, 6271–6276. https://doi.org/10.1073/pnas.1220362110

Xu, W., Xie, Y., Xia, D., Ji, L., Huang, G., 2021. A multi-sectoral decomposition and decoupling analysis of carbon emissions in Guangdong province, China. Journal of Environmental Management 298, 113485. https://doi.org/10.1016/j.jenvman.2021.113485

Yang, X., Zhang, C., Li, X., Cao, Z., Wang, P., Wang, H., Liu, G., Xia, Z., Zhu, D., Chen, W.-Q., 2024. Multinational dynamic steel cycle analysis reveals sequential decoupling between material use and economic growth. Ecological Economics 217, 108092. https://doi.org/10.1016/j.ecolecon.2023.108092

Yu, Y., Chen, D., Zhu, B., Hu, S., 2013. Eco-efficiency trends in China, 1978–2010: Decoupling environmental pressure from economic growth. Ecological Indicators 24, 177–184. https://doi.org/10.1016/j.ecolind.2012.06.007

Zhang, J., Fan, Z., Chen, Y., Gao, J., Liu, W., 2020. Decomposition and decoupling analysis of carbon dioxide emissions from economic growth in the context of China and the ASEAN countries. Science of The Total Environment 714, 136649. https://doi.org/10.1016/j.scitotenv.2020.136649

Zhang, M., Wang, W., 2013. Decouple indicators on the CO2 emission-economic growth linkage: The Jiangsu Province case. Ecological Indicators 32, 239–244. https://doi.org/10.1016/j.ecolind.2013.03.033

Zhang, Z., Xue, B., Pang, J., Chen, X., 2016. The Decoupling of Resource Consumption and Environmental Impact from Economic Growth in China: Spatial Pattern and Temporal Trend. Sustainability 8, 222. https://doi.org/10.3390/su8030222

Zhao, R., Hu, C., Du, C., Wang, C., Sun, L., 2025. Synergistic effect assessment of pollution and carbon reduction and pathway of green transformation at regional level in China. Journal of Cleaner Production 495, 145013. https://doi.org/10.1016/j.jclepro.2025.145013

Zhao, S., Wang, H.-M., Chen, W.-Q., Yang, D., Liu, J.-R., Shi, F., 2019. Environmental impacts of domestic resource extraction in China. Ecosystem Health and Sustainability 1–12. https://doi.org/10.1080/20964129.2019.1577703

Downloads

Additional Files

Published

25-09-2025

Issue

Section

Research Articles

How to Cite

Ariño, M. A., & Wang, H. (2025). Decoupling Resource Consumption from Economic Growth: A Comparative Study of China, Europe, and the United States. Journal of Sustainability, 1(2). https://doi.org/10.55845/jos-2025-1251
Received 13-07-2025
Accepted 17-09-2025
Published 25-09-2025

Similar Articles

1-10 of 18

You may also start an advanced similarity search for this article.