Environmental Impacts of Drone Delivery: A Comparative Meta-Analysis and Standardised LCA Metrics
DOI:
https://doi.org/10.55845/jos-2025-1249Keywords:
LCA, Drone Delivery, UAV, Functional Unit, Sustainability-IndicatorAbstract
The increasing demand for time-efficient and low-emission delivery solutions has brought unmanned aerial vehicles (UAVs) to the forefront of research. While numerous studies identify UAVs as a promising alternative for electrified last-mile logistics, others highlight potential ecological drawbacks. To date, the underlying factors contributing to these divergent findings have not been systematically examined. This study conducted a comprehensive meta-analysis of the environmental impacts of drone delivery systems, focusing on the life cycle assessment (LCA) methodology. It systematically reviews existing literature on climate change (CC) and other environmental impact categories associated with various UAV components and life cycle stages using the PRISMA method and searches for the main environmental hotspots associated with delivery drones across their full life cycle. Results show significant variability in the environmental burdens attributed to different drone components, particularly batteries and electronic systems, influenced by their assumed weight shares. The study found that the relative impact of drone delivery compared to ground delivery is highly dependent on the inclusion of UAV production in the environmental assessment. Furthermore, this work addresses the question of the climate change impact over an entire drone life cycle according to the reviewed studies and how modelling assumptions and system boundaries influence the results. To enable consistent comparison across studies, the study introduced the functional unit (FU) of kg CO2-eq/kg*km. Ultimately, the findings highlight the importance of standardised LCA methodologies in UAV research to ensure consistent, interpretable and comparable sustainability evaluations.
Downloads
References
Applin, S. A. (2016). Deliveries by Drone: Obstacles and Sociability. In B. Custers (Ed.), The Future of Drone Use: Opportunities and Threats from Ethical and Legal Perspectives (pp. 71–91). T.M.C. Asser Press. https://doi.org/10.1007/978-94-6265-132-6_4
Baldisseri, A., Siragusa, C., Seghezzi, A., Mangiaracina, R., & Tumino, A. (2022). Truck-based drone delivery system: An economic and environmental assessment. Transportation Research Part D: Transport and Environment, 107, 103296. https://doi.org/10.1016/j.trd.2022.103296
Bawack, R. (2025). Electronic commerce for development: A conceptual analysis and future research agenda for Africa. Information Technology for Development, 31(2), 406–434. https://doi.org/10.1080/02681102.2024.2377277
Belmonte, N., Staulo, S., Fiorot, S., Luetto, C., Rizzi, P., & Baricco, M. (2018). Fuel cell powered octocopter for inspection of mobile cranes: Design, cost analysis and environmental impacts. Applied Energy, 215, 556–565. https://doi.org/10.1016/j.apenergy.2018.02.072
Borghetti, F., Caballini, C., Carboni, A., Grossato, G., Maja, R., & Barabino, B. (2022). The Use of Drones for Last-Mile Delivery: A Numerical Case Study in Milan, Italy. Sustainability, 14(3), Article 3. https://doi.org/10.3390/su14031766
Chang, T., & Yu, H. (2015). Improving Electric Powered UAVs’ Endurance by Incorporating Battery Dumping Concept. Procedia Engineering, 99, 168–179. https://doi.org/10.1016/j.proeng.2014.12.522
Chiang, W.-C., Li, Y., Shang, J., & Urban, T. L. (2019). Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization. Applied Energy, 242, 1164–1175. https://doi.org/10.1016/j.apenergy.2019.03.117
Choi, B., Yeon, J., Min, J. U., & Lee, K. (2022). Particulate Matter (PM10 and PM2.5) and Greenhouse Gas Emissions of UAV Delivery Systems on Metropolitan Subway Tracks. Sustainability, 14(14), 8630. https://doi.org/10.3390/su14148630
Cseke, A., Haines-Gadd, M., Mativenga, P., Charnley, F., Thomas, B., Downs, R., & Perry, J. (2022). Life cycle assessment of self-healing products. CIRP Journal of Manufacturing Science and Technology, 37, 489–498. https://doi.org/10.1016/j.cirpj.2022.02.013
Domingues, A. M., & de Souza, R. G. (2024). Review of life cycle assessment on lithium-ion batteries (LIBs) recycling. Next Sustainability, 3, 100032. https://doi.org/10.1016/j.nxsust.2024.100032
Durach, C. F., Kembro, J., & Wieland, A. (2017). A New Paradigm for Systematic Literature Reviews in Supply Chain Management. Journal of Supply Chain Management, 53(4), 67–85. https://doi.org/10.1111/jscm.12145
EASA. (2024). Introduction to Environmental Footprint Aviation Study for Drones & eVTOLs | EASA. https://www.easa.europa.eu/en/en/domains/drones-air-mobility/drones-air-mobility-landscape/noise-sustainability/sustainability-environmental-footprint
Elsayed, M., & Mohamed, M. (2020). The impact of airspace regulations on unmanned aerial vehicles in last-mile operation. Transportation Research Part D: Transport and Environment, 87, 102480. https://doi.org/10.1016/j.trd.2020.102480
Eun, J., Song, B. D., Lee, S., & Lim, D.-E. (2019). Mathematical Investigation on the Sustainability of UAV Logistics. Sustainability, 11(21), Article 21. https://doi.org/10.3390/su11215932
Fernando, C., Soo, V. K., & Doolan, M. (2020). Life Cycle Assessment for Servitization: A Case Study on Current Mobility Services. Procedia Manufacturing, 43, 72–79. https://doi.org/10.1016/j.promfg.2020.02.112
Figliozzi, M. A. (2018). Lifecycle modeling and assessment of unmanned aerial vehicles (Drones) CO2e emissions. Transportation Research Part D: Transport and Environment, 57, 251–261. https://doi.org/10.1016/j.trd.2017.09.011
Figliozzi, M. A. (2020). Carbon emissions reductions in last mile and grocery deliveries utilizing air and ground autonomous vehicles. Transportation Research Part D: Transport and Environment, 85, 102443. https://doi.org/10.1016/j.trd.2020.102443
Frischknecht, R. (2020). Lehrbuch der Ökobilanzierung. Springer Spektrum.
Garg, V. (2023). Drones in last-mile delivery: A systematic review on Efficiency, Accessibility, and Sustainability.
Goodchild, A., & Toy, J. (2018). Delivery by drone: An evaluation of unmanned aerial vehicle technology in reducing CO2 emissions in the delivery service industry. Transportation Research Part D: Transport and Environment, 61, 58–67. https://doi.org/10.1016/j.trd.2017.02.017
Huang, H., Savkin, A. V., & Huang, C. (2020). Round Trip Routing for Energy-Efficient Drone Delivery Based on a Public Transportation Network. IEEE Transactions on Transportation Electrification, 6(3), 1368–1376. IEEE Transactions on Transportation Electrification. https://doi.org/10.1109/TTE.2020.3011682
Hur, S. H., & Won, M. (2024). CO2 emissions and delivery time of last-mile drone delivery using trucks. IET Intelligent Transport Systems, 18(1), 101–113. https://doi.org/10.1049/itr2.12437
ISO. (2006). ISO 14044:2006(en), Environmental management—Life cycle assessment—Requirements and guidelines. https://www.iso.org/obp/ui/#iso:std:iso:14044:ed-1:v1:en
ISO. (2021). DIN EN ISO 14040. DIN.
Jaramillo, P., Ribeiro, S., & Newman, P. (2023). Transport. In Climate Change 2022—Mitigation of Climate Change (1st edn, pp. 1049–1160). Cambridge University Press. https://doi.org/10.1017/9781009157926.012
Jazairy, A., Persson, E., Brho, M., Haartman, von, R., & Hilletofth, P. (2024). Drones in last-mile delivery: A systematic literature review from a logistics management perspective | The International Journal of Logistics Management | Emerald Publishing. https://www.emerald.com/ijlm/article/36/7/1/1267221/Drones-in-last-mile-delivery-a-systematic
Kamali, A. K., Isayev, J., Laratte, B., & Sonnemann, G. (2025). Harmonizing life cycle assessment studies of emerging technologies: The case of virgin and recycled carbon fibers. Resources, Conservation and Recycling, 220, 108323. https://doi.org/10.1016/j.resconrec.2025.108323
Kellermann, R., Biehle, T., & Fischer, L. (2020). Drones for parcel and passenger transportation: A literature review. Transportation Research Interdisciplinary Perspectives, 4, 100088. https://doi.org/10.1016/j.trip.2019.100088
Kirschstein, T. (2021). Energy demand of parcel delivery services with a mixed fleet of electric vehicles. Cleaner Engineering and Technology, 5, 100322. https://doi.org/10.1016/j.clet.2021.100322
Klöpffer, W., & Grahl, B. (2007). Ökobilanz—Ein Leitfaden für Ausbildung und Beruf. Wiley-VCH.
Koiwanit, J. (2018a). Analysis of environmental impacts of drone delivery on an online shopping system. Advances in Climate Change Research, 9(3), 201–207. https://doi.org/10.1016/j.accre.2018.09.001
Koiwanit, J. (2018b). Contributions from the Drone Delivery System in Thailand to Environmental Pollution. Journal of Physics: Conference Series, 1026(1), 012020. https://doi.org/10.1088/1742-6596/1026/1/012020
Krmela, J., Bakosova, A., Krmelova, V., & Sadjiep, S. (2021, May 27). Drone propeller blade material optimization using modern computational method. 20th International Scientific Conference Engineering for Rural Development. https://doi.org/10.22616/ERDev.2021.20.TF199
Kumar, A., Prybutok, V., & Sangana, V. K. R. (2025). Environmental Implications of Drone-Based Delivery Systems: A Structured Literature Review. Clean Technologies, 7(1), Article 1. https://doi.org/10.3390/cleantechnol7010024
Li, X., Damartzis, T., Stadler, Z., Moret, S., Meier, B., Friedl, M., & Marechal, F. (2020). Decarbonization in Complex Energy Systems: A Study on the Feasibility of Carbon Neutrality for Switzerland in 2050. FRONTIERS IN ENERGY RESEARCH, 8. https://doi.org/10.3389/fenrg.2020.549615
Li, Y., Yang, W., & Huang, B. (2020). Impact of UAV Delivery on Sustainability and Costs under Traffic Restrictions. Mathematical Problems in Engineering, 2020, e9437605. https://doi.org/10.1155/2020/9437605
Liberacki, A., Trincone, B., Duca, G., Aldieri, L., Vinci, C. P., & Carlucci, F. (2023). The Environmental Life Cycle Costs (ELCC) of Urban Air Mobility (UAM) as an input for sustainable urban mobility. Journal of Cleaner Production, 389, 136009. https://doi.org/10.1016/j.jclepro.2023.136009
Machala, M. L., Chen, X., Bunke, S. P., Forbes, G., Yegizbay, A., de Chalendar, J. A., Azevedo, I. L., Benson, S., & Tarpeh, W. A. (2025). Life cycle comparison of industrial-scale lithium-ion battery recycling and mining supply chains. Nature Communications, 16(1), 988. https://doi.org/10.1038/s41467-025-56063-x
Madani, B., & Ndiaye, M. (2022). Hybrid Truck-Drone Delivery Systems: A Systematic Literature Review. IEEE Access, 10, 92854–92878. IEEE Access. https://doi.org/10.1109/ACCESS.2022.3202895
Martins, B. O., Lavallée, C., & Silkoset, A. (2021). Drone Use for COVID-19 Related Problems: Techno-solutionism and its Societal Implications. Global Policy, 12(5), 603–612. https://doi.org/10.1111/1758-5899.13007
May, M., Jung, M., Pfaff, J., Schopferer, S., Schaufelberger, B., Matura, P., & Imbert, M. (2021). Vulnerability of aerostructures to drone impact – characterization of critical drone components (world). AIAA SciTech Forum. https://doi.org/10.2514/6.2022-0870
Mitchell, S., Steinbach, J., Flanagan, T., Ghabezi, P., Harrison, N., O’Reilly, S., Killian, S., & Finnegan, W. (2023). Evaluating the sustainability of lightweight drones for delivery: Towards a suitable methodology for assessment. Functional Composite Materials, 4(1), 4. https://doi.org/10.1186/s42252-023-00040-4
Mohammad, W. A., Nazih Diab, Y., Elomri, A., & Triki, C. (2023). Innovative solutions in last mile delivery: Concepts, practices, challenges, and future directions. Supply Chain Forum: An International Journal, 24(2), 151–169. https://doi.org/10.1080/16258312.2023.2173488
Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., & PRISMA-P Group. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1), 1. https://doi.org/10.1186/2046-4053-4-1
Neuberger, B. (2017). An Exploration of Commercial Unmanned Aerial Vehicles (UAVs) Through Life Cycle Assessments—ProQuest [Rochester Institute of Technology]. https://www.proquest.com/openview/80a8b89e0a68735e16011ab799885310/1?cbl=18750&pq-origsite=gscholar&parentSessionId=cSs0eQjn6WwATfqnWhpCRv4uPJPeJ40VR2hhFSoIcz4%3D
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
Park, J., Kim, S., & Suh, K. (2018). A Comparative Analysis of the Environmental Benefits of Drone-Based Delivery Services in Urban and Rural Areas. Sustainability, 10(3), Article 3. https://doi.org/10.3390/su10030888
Peereboom, E. C., Kleijn, R., Lemkowitz, S., & Lundie, S. (1998). Influence of Inventory Data Sets on Life-Cycle Assessment Results: A Case Study on PVC. Journal of Industrial Ecology, 2(3), 109–130. https://doi.org/10.1162/jiec.1998.2.3.109
Pollet, F., Budinger, M., Delbecq, S., Moschetta, J.-M., & Planès, T. (2023, July). Environmental Life Cycle Assessments for the Design Exploration of Electric UAVs. Aerospace Europe Conference 2023 – 10TH EUCASS – 9TH CEAS. https://doi.org/10.13009/EUCASS2023-548
Pollet, F., Lutz, F., Planès, T., Delbecq, S., & Budinger, M. (2025). A generic life cycle assessment tool for overall aircraft design. https://doi.org/10.1016/j.apenergy.2025.126514
Raghunatha, A., Lindkvist, E., Thollander, P., Hansson, E., & Jonsson, G. (2023). Critical assessment of emissions, costs, and time for last-mile goods delivery by drones versus trucks. Scientific Reports, 13(1), 11814. https://doi.org/10.1038/s41598-023-38922-z
Rashidzadeh, E., Hadji Molana, S. M., Soltani, R., & Hafezalkotob, A. (2021). Assessing the sustainability of using drone technology for last-mile delivery in a blood supply chain. Journal of Modelling in Management, 16(4), 1376–1402. https://doi.org/10.1108/JM2-09-2020-0241
Resat, H. (2020). Design and Analysis of Novel Hybrid Multi-Objective Optimization Approach for Data-Driven Sustainable Delivery Systems | IEEE Journals & Magazine | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/9091793
Rosenfeld, D. C., Lindorfer, J., & Fazeni-Fraisl, K. (2019). Comparison of advanced fuels—Which technology can win from the life cycle perspective? Journal of Cleaner Production, 238, 117879. https://doi.org/10.1016/j.jclepro.2019.117879
Ruiz Estrada, M. (2020). The Uses of Drones in Case of Massive Epidemics Contagious Diseases Relief Humanitarian Aid: Wuhan-COVID-19 Crisis (SSRN Scholarly Paper No. 3546547). Social Science Research Network. https://doi.org/10.2139/ssrn.3546547
Ruiz Estrada, M., & Ndoma, I. (2017). How Unmanned Aerial Vehicles – UAV’s – (or Drones) Can Help in Case of Natural Disasters Response and Humanitarian Relief Aid? (SSRN Scholarly Paper No. 2961576). Social Science Research Network. https://doi.org/10.2139/ssrn.2961576
Smurthwaite, M., Jiang, L., & Williams, K. S. (2023). A review of the LCA literature investigating the methods by which distinct impact categories are compared. Environment, Development and Sustainability, 26(8), 19113–19129. https://doi.org/10.1007/s10668-023-03453-0
Statista. (2023). Parcel shipping volume worldwide. Statista. https://www.statista.com/statistics/1139910/parcel-shipping-volume-worldwide/
Stolaroff, J. K., Samaras, C., O’Neill, E. R., Lubers, A., Mitchell, A. S., & Ceperley, D. (2018). Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery. Nature Communications, 9(1), Article 1. https://doi.org/10.1038/s41467-017-02411-5
van der Harst, E., & Potting, J. (2014). Variation in LCA results for disposable polystyrene beverage cups due to multiple data sets and modelling choices. Environmental Modelling & Software, 51, 123–135. https://doi.org/10.1016/j.envsoft.2013.09.014
Vedrtnam, A., Negi, H., & Kalauni, K. (2025). Materials and Energy-Centric Life Cycle Assessment for Drones: A Review. Journal of Composites Science, 9(4), 169. https://doi.org/10.3390/jcs9040169
Wang, J. (2023). Carbon dioxide life cycle assessment on urban air mobility in context of emergency medical service. https://aaltodoc.aalto.fi/handle/123456789/122486
Yang, X., Ke, Y., Gao, Q., & Gu, F. (2025). Environmental, Economic, and Social Implications of Unmanned Aerial Vehicles for Last-Mile Delivery (SSRN Scholarly Paper No. 5361361). Social Science Research Network. https://doi.org/10.2139/ssrn.5361361
Yowtak, K., Imiola, J., Andrews, M., Cardillo, K., & Skerlos, S. (2020). Comparative life cycle assessment of unmanned aerial vehicles, internal combustion engine vehicles and battery electric vehicles for grocery delivery. Procedia CIRP, 90, 244–250. https://doi.org/10.1016/j.procir.2020.02.003
Zhang, J. (2021). Economic and Environmental Impacts of Drone Delivery—ProQuest. https://www.proquest.com/openview/b15e86784bc3562ac8b85012a8211750/1?pq-origsite=gscholar&cbl=18750&diss=y
Zumsteg, J. M., Cooper, J. S., & Noon, M. S. (2012). Systematic Review Checklist—A Standardized Technique for Assessing and Reporting Reviews of Life Cycle Assessment Data. Journal of Industrial Ecology, 16(s1), S12–S21. https://doi.org/10.1111/j.1530-9290.2012.00476.x
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Hannah Aster, Lukas Zeilerbauer, Johannes Lindorfer

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Funding data
-
Österreichische Forschungsförderungsgesellschaft
Grant numbers FO999903052
Accepted 02-10-2025
Published 20-10-2025