The Evolution of Neodymium Cycle, Urban Minerals, and Trade in China

Authors

DOI:

https://doi.org/10.55845/jos-2025-1115

Keywords:

Neodymium, Substance Flow Analysis, Urban Mining, Sustainability, Resource Management

Abstract

Neodymium is a critical element for the global transition to clean energy, yet its long-term supply is constrained by trade dependencies, resource depletion, and persistently low recycling rates. This study employs a dynamic substance flow analysis to quantify China’s cycle of neodymium from 2001 - 2021, and to assess the contribution of urban mining—i.e., the recovery of neodymium from end-of-life products (or called urban minerals)—to domestic resource availability. We also evaluate the effectiveness of recent government measures aimed at curbing illegal mining and stabilising domestic supply. With demand for neodymium set to rise sharply in tandem with electric vehicle and renewable-energy deployment, the results underscore the importance of: (1) scaling up closed-loop recycling infrastructures, (2) reinforcing regulatory oversight and enforcement, and (3) diversifying trade partnerships to bolster supply security. By shifting the balance toward secondary resources and robust governance, China can reduce its dependence on primary extraction and enhance the resilience of its neodymium supply chain.

References

Baidu (2024). China's rare earth position is stable, occupying an important share globally. Retrieved April 21 from https://baijiahao.baidu.com/s?id=1806983668036295197&wfr=spider&for=pc

Bernardes, M., Moraes, F. T. F., Tanaka, K. H., & Lima, R. D. (2024). Engaging the End User in Waste from Electrical and Electronic Equipment Management: An Action Research Study. Systemic Practice and Action Research, 37(1), 105-126.

Bhattarai, U., Maraseni, T., & Apan, A. (2022). Assay of renewable energy transition: A systematic literature review. Science of the Total Environment, 833, 155159.

Carl G., Steven B., Komal H. (2022). Pre-processing of e-waste in Canada: Case of a facility responding to changing material composition. Resources, Environment and Sustainability, 9, 100069.

Cho, N. H., Lee, S. J., Kang, Y. Y., Yoon, Y. S., & Jeon, T. W. (2024). Enhancement of recycling system for large WEEE plastics in Korea via material flow analysis (MFA) and hazardous substances assessment. Resources, Conservation & Recycling, 204, 107-481.

Claudio-Quiroga, G., Gil-Alana, L. A., & Maiza-Larrarte, A. (2023). Mineral prices persistence and the development of a new energy vehicle industry in China: A fractional integration approach. Resources Policy, 82, 103433.

Dong, C., Dong, X., Jiang, Q., Dong, K., & Liu, G. (2018). What is the probability of achieving the carbon dioxide emission targets of the Paris Agreement? Evidence from the top ten emitters. Science of the Total Environment, 622, 1294-1303.

Eheliyagoda, D., Ramanujan, D., Veluri, B., Liu, Q., & Liu, G. (2023). Tracing the multiregional evolution of the global dysprosium demand-supply chain. Resources, Conservation & Recycling, 199, 107245.

Eheliyagoda, D., Xiong, X., & Zeng, X. (2024). The Position of China in Neodymium Utilization: Trend and Challenges. ACS Sustainable Resource Management, 1(12), 2621-2629.

Fahmy, H. (2021). The rise in investors' awareness of climate risks after the Paris Agreement and the clean energy-oil-technology prices nexus. Energy Economics, 106, 105738.

Fang, G., Gao, Z., & Sun, C. (2023). How the new energy industry contributes to carbon reduction? —Evidence from China. Journal of Environmental Management, 329, 117066.

Geng, J., Hao, H., Sun, X., Xun, D., Liu, Z., & Zhao, F. (2021). Static material flow analysis of neodymium in China. Journal of Industrial Ecology, 25(1), 114-124.

Glöser, S., Soulier, M., & Espinoza, L. A. T. (2013). Dynamic Analysis of Global Copper Flows. Global Stocks, Postconsumer Material Flows, Recycling Indicators, and Uncertainty Evaluation. Environmental Science & Technology, 47(12), 6564-6572.

Guo, H., & Zhang, T. (2016). Sinks of steel in china–addition to in-use stock, export and loss. Frontiers of Environmental Science & Engineering, 10(1).

Hu, Z., Yu, B., Liu, L.-C., & Wei, Y.-M. (2024). Evaluating rare-earth constraints on wind power development under China's carbon-neutral target. Science of the Total Environment, 912, 168634.

Li, Y., Wang, Y., & Ge, J. (2023). Tracing the material flows of dysprosium in China from 2010 to 2020: An investigation of the partition characteristics of different rare earth mining areas. Resources Policy, 85, 103836.

Lin, M., Wu, Y., Qin, B., Cao, W., Liu, J., Xu, Z., & Ruan, J. (2022). Response to the Upcoming Emerging Waste: Necessity and Feasibility Analysis of Photovoltaic Waste Recovery in China. Environmental Science & Technology, 56(23), 17396-17409.

Liu, Q., Sun, K., Ouyang, X., Sen, B., Liu, L., Dai, T., & Liu, G. (2022). Tracking Three Decades of Global Neodymium Stocks and Flows with a Trade-Linked Multiregional Material Flow Analysis. Environmental Science & Technology, 56(16), 11807-11817.

Liu, W., Chen, L., Luo, F., Zhao, Y., Li, X., & Zeng, X. (2025). Novel assessment of China's cobalt supply chain resilience based on DPSIR model and machine learning. Resources, Conservation and Recycling, 215, 108107.

Liu, W., Li, X., Liu, C., Wang, M., & Liu, L. (2023). Resilience assessment of the cobalt supply chain in China under the impact of electric vehicles and geopolitical supply risks. Resources Policy, 80, 103183.

Liu, W., Li, X., Wang, J., Zhong, J., Wang, M., & Yang, J. (2024). Knowledge mapping of research on securing the supply chain for critical minerals: A scientometrics and text mining approach. Journal of Cleaner Production, 434, 140312.

Liu, X., Lu, X., Feng, Y., Zhang, L., & Yuan, Z. (2022). Recycled WEEE plastics in China: Generation trend and environmental impacts. Resources, Conservation and Recycling, 177, 105978.

Malin Zu. (2025). Material flow analysis and modelling of the feedstock potential for recycling polystyrene. Circular Economy, 4(1), 100127.

Packey, D. J., & Kingsnorth, D. (2016). The impact of unregulated ionic clay rare earth mining in China. Resources Policy, 48, 112-116.

Raza, S., Ghasali, E., Raza, M., Chen, C., & Li, B. (2023). Advances in technology and utilization of natural resources for achieving carbon neutrality and a sustainable solution to neutral environment. Environmental Research, 220, 115135.

Rostek, L., Espinoza, L. T., Goldmann, D., & Loibl, A. (2022). A dynamic material flow analysis of the global anthropogenic zinc cycle: Providing a quantitative basis for circularity discussions. Resources, Conservation and Recycling, 180, 106154.

Sherwood, J., Gongora, G. T., & Velenturf, A. (2022). A circular economy metric to determine sustainable resource use illustrated with neodymium for wind turbines. Journal of Cleaner Production, 376, 134305.

Song, X., Geng, Y., Zhang, Y., Zhang, X., Gao, Z., & Li, M. (2022). Dynamic potassium flows analysis in China for 2010–2019. Resources Policy, 78, 102803.

Su, C., Geng, Y., Zeng, X., Gao, Z., & Song, X. (2023). Uncovering the features of nickel flows in China. Resources, Conservation & Recycling, 188, 106702.

Vanegas, P. , Peeters, J. R. , Cattrysse, D. , Dewulf, W. , & Duflou, J. R. (2017). Improvement potential of today's weee recycling performance: the case of lcd tvs in belgium. Frontiers of Environmental Science & Engineering, 11(5), 15.

Xiao, S., Geng, Y., Pan, H., Gao, Z., & Yao, T. (2022). Uncovering the Key Features of Dysprosium Flows and Stocks in China. Environmental Science and Technology, 56(12), 8682-8690.

Xiong, X., Zeng, X., Zhang, Z., Pell, R., Matsubae, K., & Hu, Z. (2023). China’s recycling potential of large-scale public transport vehicles and its implications. Communications Engineering, 2(1), 56.

Xue, R., Yong, G., Xin, S., Han, H., & C, S. (2021). Dynamic material flow analysis of natural graphite in China for 2001-2018. Resources, Conservation and Recycling, 173.

Yao, T., Geng, Y., Sarkis, J., Xiao, S., & Gao, Z. (2021). Dynamic neodymium stocks and flows analysis in China. Resources Conservation and Recycling, 174(6), 105752.

Zhao, G. , Geng, Y. , Tang, C. , Hao, H. , Bleischwitz, R. , & Tian, X. (2022). Improving aluminium resource efficiency in china: based upon material flow analysis and entropy analysis. Circular Economy, 1(1), 100005.

Zheng, B., Zhang, Y. W., Geng, Y., Wei, W., Ge, Z., & Gao, Z. (2022). Investigating lanthanum flows and stocks in China: A dynamic material flow analysis. Journal of Cleaner Production, 368, 133204.

Zhu, E., Geng Y., Xiao, S., Guo, T., Gao, Z., Gao, Z. (2024). Mapping the evolution of manganese flows and stocks in China from 2000 to 2021, Resources, Environment and Sustainability, 16,100152.

CC. (2015-2021). China Customs. http://stats.customs.gov.cn/

Chen, Z., Ye, S., & Xu, P. (2016). Analysis and prospect of rare earth market since 2010. Rare earth information, 06, 10-15.

CISY. (2001-2022). China Industrial Statistical Yearbook.

CREIA. (2015-2021). China Rare Earth Industry Association:Rare earth industry operation report.

CSRE. (2010-2019). China Society Rare Earth yearbook.

CWEA. (2018). China Wind Energy Association : China Wind Power Map 2018. http://www.cwea.org.cn/industry_data_2018.html

Geng, J., Hao, H., Sun, X., Xun, D., Liu, Z., & Zhao, F. (2020). Static material flow analysis of neodymium in China. Journal of Industrial Ecology.

MNR. (2020-2021). Ministry of Natural Resources : Indicators for the total amount of rare earth ore tungsten mining control. http://gi.mnr.gov.cn/202109/t20210930_2683341.html

SCDRC. (2001-2014). State Council Development Research Center Information Network. http://www.drcnet.com.cn/www/int/#

Wang, Q. C., Wang, P., Qiu, Y., Dai, T., & Chen, W. Q. (2020). Byproduct Surplus: Lighting the Depreciative Europium in China's Rare Earth Boom. Environmental Science & Technology(22), 54.

Yao, T., Geng, Y., Sarkis, J., Xiao, S., & Gao, Z. (2021). Dynamic neodymium stocks and flows analysis in China. Resources Conservation and Recycling, 174(6), 105752. https://doi.org/10.1016/j.resconrec.2021.105752

Zheng, B., Zhang, Y. W., Geng, Y., Wei, W., Tan, X., Xiao, S., & Gao, Z. (2023). Measuring the anthropogenic cycles of light rare earths in China : Implications for the imbalance problem. Science of the Total Environment, 879, 163215.

Downloads

Published

29-05-2025

Issue

Section

Research Articles

How to Cite

Xiong, X., Zhao, L., Xu, G., & Zeng, X. (2025). The Evolution of Neodymium Cycle, Urban Minerals, and Trade in China. Journal of Sustainability, 1(1). https://doi.org/10.55845/jos-2025-1115