AI-Based Modelling and Processing Technologies for Hydrogen Creation

Authors

  • Cosimo Magazzino Department of Political Science, Roma Tre University
  • Muhammad Haroon Department of Economics, Ghazi University

DOI:

https://doi.org/10.55845/jos-2025-1112

Keywords:

Artificial Intelligence, Machine Learning, Blue Hydrogen, Carbon Capture and Storage (CCS), Steam Methane Reforming, Process Optimalisation, Catalyst Discovery, Digital Twin Technology

Abstract

This research aims to thoroughly analyse recent advancements in method demonstration and the implementation of Artificial Intelligence (AI) in integrated hydrogen production and carbon capture. The primary objective is to offer a detailed account of the anticipated role of AI in shaping future research endeavours related to blue hydrogen production and carbon capture. This involves a focus on Machine Learning (ML) applications in material development and process optimisation. The research provides an overview of AI and cycle demonstration in a relevant context, accompanied by a concise examination of recent developments in blue hydrogen production. The foundational instruments of AI modelling and processing are briefly outlined, and their application in blue hydrogen creation is discussed, considering both advantages and drawbacks. Ultimately, the research aims to deliver a comprehensive overview of the advancements in ML, emphasising its substantial contribution to accelerating blue hydrogen generation, particularly in the realms of material and process development. AI modelling and processing technologies are preferred for hydrogen creation due to their superior ability to optimise complex, data-intensive processes and accelerate material innovation, overcoming the limitations of traditional modelling methods.

Downloads

Download data is not yet available.

References

M. Abdallah, M. Abu Talib, S. Feroz, Q. Nasir, H. Abdalla, and B. Mahfood, (2020). Artificial intelligence applications in solid waste management: A systematic research review. Waste Manag., 109, 231-246. https://doi.org/10.1016/J.WASMAN.2020.04.057.

Z. Abdin, (2024). Empowering the hydrogen economy: The transformative potential of blockchain technology. Renew. Sustain. Energy Rev., 200, 114572. https://doi.org/10.1016/j.rser.2024.114572.

T. S. Abdulkadir, A. Salami, G. Kareem, and A. Com, (2012). Artificial Neural Network Modeling of Rainfall in Ilorin, Kwara State, Nigeria. J. Res. Inf. Civ. Eng. USEP-RICE, 9, 108-120.

O. Adedeji and Z. Wang, (2019). Intelligent waste classification system using deep learning convolutional neural network. Procedia Manuf., 35, 607-612. https://doi.org/10.1016/j.promfg.2019.05.086.

O. Adeleke, S. A. Akinlabi, T. C. Jen, and I. Dunmade, (2021). Application of artificial neural networks for predicting the physical composition of municipal solid waste: An assessment of the impact of seasonal variation. Waste Manag. Res., 39, 8, 1058-1068. https://doi.org/10.1177/0734242X21991642.

M. Amir, R. G. Deshmukh, H. M. Khalid, …, and Sopian, K., (2023). Energy storage technologies: An integrated survey of developments, global economical/environmental effects, optimal schedul-ing model, and sustainable adaption policies. J. Energy Storage, 72, E, 108694. https://doi.org/10.1016/j.est.2023.108694.

A. Z. Arsad, M. A. Hannan, Ali Q. Al-Shetwi, …, and T. M. Indra Mahlia, (2023). Hydrogen electrolyser technologies and their modelling for sustainable energy production: A comprehensive review and suggestions. Int. J. Hydrogen Energy, 48, 72, 27841-27871. https://doi.org/10.1016/j.ijhydene.2023.04.014.

J. C. B. F. Bijos, V. M. Zanta, J. Morató, L. M. Queiroz, and K. P. S. R. Oliveira-Esquerre, (2022). Improving circularity in municipal solid waste management through machine learning in Latin America and the Caribbean. Sustain. Chem. Pharm., 28, 100740. https://doi.org/10.1016/J.SCP.2022.100740.

S. Chen, F. Wang, and M. Haroon, (2023). The impact of green economic recovery on economic growth and ecological footprint: A case study in developing countries of Asia. Resour. Policy, 85, 103955. https://doi.org/10.1016/j.resourpol.2023.103955.

J. Cheng, T. Liang, X.-Q. Xie, Z. Feng, and L. Meng, (2024). A new era of antibody discovery: an in-depth review of AI-driven approaches. Drug Discov. Today, 29, 6, 103984. https://doi.org/10.1016/j.drudis.2024.103984.

M. Dahake, P. Gajjal, C. Ladekar, and M. Attal, (2024). Intelligent Decision-Based Hydrogen-Biodiesel engine to improve engine performance. Fuel, 367, 131449. https://doi.org/10.1016/j.fuel.2024.131449.

W. G. Davies, S. Babamohammadi, Y. Yang, and S. M. Soltani, (2023). The rise of the machines: A state-of-the-art technical review on process modelling and machine learning within hydrogen production with carbon capture. Gas Sci. Eng., 118, 205104. https://doi.org/10.1016/j.jgsce.2023.205104.

W. Deng, Q. Zheng, and L. Chen, (2009). Regularized extreme learning machine. 2009 IEEE Symp. Comput. Intell. Data Mining, CIDM 2009 - Proc., 389-395. https://doi.org/10.1109/CIDM.2009.4938676.

R. Elumalai and K. Ravi, (2023). A hybrid calibration scheme for developing hydrogen enrichment ratio control map using RSM and ANN technique to enhance the characteristics of an ammonia biodiesel RCCI combustion engine. Case Stud. Therm. Eng., 49, 103257. https://doi.org/10.1016/j.csite.2023.103257.

Y. Fang, Y. Fan, M. Haroon, and A. Dilanchiev, (2023). Exploring the relationship between global economic policy and volatility of crude futures: A two-factor GARCH-MIDAS analysis. Resour. Policy, 85, 103766. https://doi.org/10.1016/j.resourpol.2023.103766.

I. A. Farfán, C. B. Castro, R. G. Lazo, …, and Y. M. Macia, (2024). Socio-environmental and technical factors assessment of photovoltaic hydrogen production in Antofagasta, Chile. Energy Strateg. Rev., 53, 101373. https://doi.org/10.1016/j.esr.2024.101373.

Z. Fei, F. Yang, K.-L. Tsui, L. Li, and Z. Zhang, (2021). Early prediction of battery lifetime via a machine learning based framework. Energy, 225, 120205. https://doi.org/10.1016/j.energy.2021.120205.

G. Gadanidis, (2017). Artificial intelligence, computational thinking, and mathematics education. Int. J. Inf. Learn. Technol., 34, 2, 133-139. https://doi.org/10.1108/IJILT-09-2016-0048.

F. Ghanbari, H. Kamalan, and A. Sarraf, (2021). An evolutionary machine learning approach for municipal solid waste generation estimation utilizing socioeconomic components. Arab. J. Geosci., 14, 2. https://doi.org/10.1007/S12517-020-06348-W.

S. Gul, S. Hussain, H. Khan, M. Arshad, J. R. Khan, and A. de Jesus Motheo, (2024). Integrated AI-driven optimization of Fenton process for the treatment of antibiotic sulfamethoxazole: Insights into mechanistic approach. Chemosphere, 357, 141868. https://doi.org/10.1016/j.chemosphere.2024.141868.

A. Gulraiz, A. J. Al Bastaki, K. Magamal, …, and Z. Said, (2025). Energy advancements and integration strategies in hydrogen and battery storage for renewable energy systems. iScience, 28, 3, 111945. https://doi.org/10.1016/j.isci.2025.111945.

H. N. Guo, S. B. Wu, Y. J. Tian, J. Zhang, and H. T. Liu, (2021). Application of machine learning methods for the prediction of organic solid waste treatment and recycling processes: A review. Bioresour. Technol., 319. https://doi.org/10.1016/j.biortech.2020.124114.

G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing, (2017). Learning from class-imbalanced data: Review of methods and applications. Expert Syst. Appl., 73, 220-239. https://doi.org/10.1016/j.eswa.2016.12.035.

M. Haroon, (2024). Energy poverty in the face of stringent environmental policies: An analysis of mitigating role of energy storage in China. J. Energy Storage, 81, 110396. https://doi.org/https://doi.org/10.1016/j.est.2023.110396.

S. E. Hosseini and M. A. Wahid, (2016). Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sustain. Energy Rev., 57, 850-866. https://doi.org/10.1016/j.rser.2015.12.112.

M. L. How, S. M. Cheah, Y. J. Chan, A. C. Khor, and E. M. P. Say, (2020). Artificial Intelligence-Enhanced Decision Support for Informing Global Sustainable Development: A Human-Centric AI-Thinking Approach. Information, 11, 1, 39. https://doi.org/10.3390/INFO11010039.

A. Hussein Khalaf, Y. Xiao, N. Xu, …, J. Tang, (2024). Emerging AI technologies for corrosion monitoring in oil and gas industry: A comprehensive review. Eng. Fail. Anal., 155, 107735. https://doi.org/10.1016/j.engfailanal.2023.107735.

N. John, J. H. Wesseling, E. Worrell, and M. Hekkert, (2022). How key-enabling technologies' regimes influence sociotechnical transitions: The impact of artificial intelligence on decarbonization in the steel industry. J. Clean. Prod., 370, 133624. https://doi.org/10.1016/j.jclepro.2022.133624.

M. M. Kabir, S. K. Roy, F. Alam, …, and H. K. Shon, (2023). Machine learning-based prediction and optimization of green hydrogen production technologies from water industries for a circular economy. Desalination, 567, 116992. https://doi.org/10.1016/j.desal.2023.116992.

M. Kannangara, R. Dua, L. Ahmadi, and F. Bensebaa, (2018). Modeling and prediction of regional municipal solid waste generation and diversion in Canada using machine learning approaches. Waste Manag., 74, 3-15. https://doi.org/10.1016/j.wasman.2017.11.057.

S. S. Kanrar and S. K. Sarkar, (2024). Non-equilibrium Green's function analysis of charge plasma-based source-drain electrode P-type MoTe2 MOSFET for high sensitivity hydrogen sensing. Micro Nanostructures, 189, 207823. https://doi.org/10.1016/j.micrna.2024.207823.

V. Karri, T. Ho, and O. Madsen, (2008). Artificial neural networks and neuro-fuzzy inference systems as virtual sensors for hydrogen safety prediction. Int. J. Hydrogen Energy, 33, 11, 2857-2867. https://doi.org/10.1016/j.ijhydene.2008.02.039.

A. Krogh, (2008). What are artificial neural networks?. Nat. Biotechnol., 26, 2, 195-197. https://doi.org/10.1038/NBT1386.

S. Kumari, J. Chowdhry, and M. C. Garg, (2024). AI-enhanced adsorption modeling: Challenges, applications, and bibliographic analysis. J. Environ. Manage., 351, 119968. https://doi.org/10.1016/j.jenvman.2023.119968.

A. Lakhouit, M. Shaban, A. Alatawi, …, and M. Elsawy, (2023). Machine-learning approaches in geo-environmental engineering: Exploring smart solid waste management. J. Environ. Manage., 330, 117174. https://doi.org/10.1016/J.JENVMAN.2022.117174.

Y. Li, X. Wang, Z. Zhao, S. Han, and Z. Liu, (2020). Lagoon water quality monitoring based on digital image analysis and machine learning estimators. Water Res., 172, 115471. https://doi.org/10.1016/j.watres.2020.115471.

R. Lian, Q. Liu, G. Jiang, …, and M. Yang, (2023). Blood biomarkers for sarcopenia: A systematic review and meta-analysis of diagnostic test accuracy studies. Ageing Res. Rev., 93, 102148. https://doi.org/10.1016/j.arr.2023.102148.

T. Lombardo, M. Duquesnoy, H. El-Bouysidy, …, and A. A. Franco, (2022). Artificial Intelligence Applied to Battery Research: Hype or Reality?, Chem. Rev., 122, 12, 10899-10969. https://doi.org/10.1021/acs.chemrev.1c00108.

Y. Lu, Z. Shen, L. Shen, …, and D. Xu, (2024). Combining AI and traditional screening for discovery of a potent ROCK2 inhibitor against lymphoma. J. Mol. Struct., 1303, 137394. https://doi.org/10.1016/j.molstruc.2023.137394.

C. Magazzino, (2024). AI for Green Energy Production. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier. https://doi.org/10.1016/B978-0-443-15742-4.00022-3.

C. Magazzino, (2023). The Inextricable Link Among Climate Change, Pandemic, Migrations, and Geo-politics: How Artificial Intelligence Can Help Us, 216-222. In: J. A. Benítez-Andrades, P. García-Llamas, A. Taboada, L. Estévez-Mauriz, R. Baelo, (Eds.). Global Challenges for a Sus-tainable Society. EURECA-PRO 2022. Springer Proceedings in Earth and Environmental Sci-ences, Springer, Cham. https://doi.org/10.1007/978-3-031-25840-4_26.

C. Magazzino, M. Mele, and N. Schneider, (2022). A New Artificial Neural Networks Algorithm to An-alyze the Nexus Among Logistics Performance, Energy Demand, and Environmental Degrada-tion. Struct. Chang. Econ. Dyn., 60, 315-328. https://doi.org/10.1016/10.1016/j.strueco.2021.11.018.

C. Magazzino, and Z. Zoundi, (2025). Enhancing climate action evaluation using artificial neural net-works: An analysis of SDG 13, Sustain. Futures, 9, 100439. https://doi.org/10.1016/j.sftr.2025.100439.

F. Maleki, M. Bararzadeh Ledari, M. Fani, and D. kamelizadeh, (2024). Sustainable hydrogen supply chain development for low-carbon transportation in a fossil-based port region: A case study in a tourism hub. Int. J. Hydrogen Energy, 65, 95-111. https://doi.org/10.1016/j.ijhydene.2024.03.362.

V. Mann, R. Gani, and V. Venkatasubramanian, (2023). Group contribution-based property modeling for chemical product design: A perspective in the AI era. Fluid Phase Equilib., 568, 113734. https://doi.org/10.1016/j.fluid.2023.113734.

D. Morrow and D. Rondinelli, (2002). Adopting corporate environmental management systems: Motivations and results of ISO 14001 and EMAS certification. Eur. Manag. J., 20, 2, 159-171. https://doi.org/10.1016/S0263-2373(02)00026-9.

A. Namoun, B. R. Hussein, A. Tufail, A. Alrehaili, T. A. Syed, and O. Benrhouma, (2022). An Ensemble Learning Based Classification Approach for the Prediction of Household Solid Waste Generation. Sensors, 22, 9. https://doi.org/10.3390/S22093506.

R. Nepal, H. Phoumin, and A. Khatri, (2021). Green technological development and deployment in the association of southeast Asian economies (ASEAN)—At crossroads or roundabout?. Sustain., 13, 2, 1-19. https://doi.org/10.3390/SU13020758.

K. P. M. Niyas and P. Thiyagarajan, (2023). A systematic review on early prediction of Mild cognitive impairment to alzheimers using machine learning algorithms. Int. J. Intell. Networks, 4, March, 74-88. https://doi.org/10.1016/j.ijin.2023.03.004.

N. K. Obiora, C. O. Ujah, C. O. Asadu, F. O. Kolawole, and B. N. Ekwueme, (2024). Production of hydrogen energy from biomass: Prospects and challenges. Green Technol. Sustain., 2, 3, 100100. https://doi.org/10.1016/j.grets.2024.100100.

P. Oguz-Ekim, (2021). Machine Learning Approaches for Municipal Solid Waste Generation Forecasting. Environ. Eng. Sci., 38, 6, 489-499. https://doi.org/10.1089/EES.2020.0232.

L. K. Osei, F., Odoi-Yorke, R., Opoku, …, and F. K. Forson, (2024). Techno-economic viability of decentralised solar photovoltaic-based green hydrogen production for sustainable energy transition in Ghana. Sol. Compass, 9, 100068. https://doi.org/10.1016/j.solcom.2024.100068.

M. Peksen and H. Spliethoff, (2023). Optimising pre-reforming for quality r-SOC syngas preparation using artificial intelligence (AI) based machine learning (ML). Int. J. Hydrogen Energy, 48, 62, 24002-24017. https://doi.org/10.1016/j.ijhydene.2023.03.223.

G. Ramkumar, M. Tamilselvi, S. D. Sundarsingh Jebaseelan, …, M. Rajasimman, (2024). Enhanced machine learning for nanomaterial identification of photo thermal hydrogen production. Int. J. Hydrogen Energy, 52, 696-708. https://doi.org/10.1016/j.ijhydene.2023.07.128.

T. Saheb, M. Dehghani, and T. Saheb, (2022). Artificial intelligence for sustainable energy: A contextual topic modeling and content analysis. Sustain. Comput. Informatics Syst., 35, 100699. https://doi.org/10.1016/j.suscom.2022.100699.

A. Sai Ramesh, S. Vigneshwar, S. Vickram, …, and W. Kim, (2023). Artificial intelligence driven hydrogen and battery technologies – A review. Fuel, 337, 126862. https://doi.org/10.1016/j.fuel.2022.126862.

G. Şenol, F. Selimefendigil, and H. F. Öztop, (2024). A review on nanofluid, phase change material and machine learning applications for thermal management of hydrogen storage in metal hydrides. Int. J. Hydrogen Energy, 68, 1178-1208. https://doi.org/10.1016/j.ijhydene.2024.04.215.

K. C. Seto, S. J. Davis, R. B. Mitchell, …, and D. Ürge-Vorsatz, (2016). Carbon Lock-In: Types, Causes, and Policy Implications. Annu. Rev. Environ. Resour., 41, 425-452. https://doi.org/10.1146/ANNUREV-ENVIRON-110615-085934.

S. Su, X. Yan, K. Agbossou, R. Chahine, and Y. Zong, (2022). Artificial intelligence for hydrogen-based hybrid renewable energy systems: A review with case study. J. Phys. Conf. Ser., 2208, 1, 0-9. https://doi.org/10.1088/1742-6596/2208/1/012013.

J. A. K. Suykens, (2014). Introduction to Machine Learning. Academic Press Library in Signal Processing, 1, 765-773. https://doi.org/10.1016/B978-0-12-396502-8.00013-9.

K. Ullah, I. Rashid, H. Afzal, M. M. W. Iqbal, Y. A. Bangash, and H. Abbas, (2020). SS7 Vulnerabilities—A Survey and Implementation of Machine Learning vs Rule Based Filtering for Detection of SS7 Network Attacks. IEEE Commun. Surv. Tutorials, 22, 2, 1337-1371. https://doi.org/10.1109/COMST.2020.2971757.

C. A. Velis, D. C. Wilson, Y. Gavish, S. M. Grimes, and A. Whiteman, (2023). Socio-economic development drives solid waste management performance in cities: A global analysis using machine learning. Sci. Total Environ., 872, 161913. https://doi.org/10.1016/J.SCITOTENV.2023.161913.

A. V. Vorontsov and P. G. Smirniotis, (2023). Advancements in hydrogen energy research with the assistance of computational chemistry. Int. J. Hydrogen Energy, 48, 40, 14978-14999. https://doi.org/10.1016/j.ijhydene.2022.12.356.

J. Yan and M. Haroon, (2023). Financing efficiency in natural resource markets mobilizing private and public capital for a green recovery. Resour. Policy, 85, 103841. https://doi.org/https://doi.org/10.1016/j.resourpol.2023.103841.

Z. R. Yang and Z. Yang, (2014). 6.01 - Artificial Neural Networks. Comprehensive Biomedical Physics, 6, 1-17. https://doi.org/10.1016/B978-0-444-53632-7.01101-1.

T. Ye, S. Zhao, C. K. M. Lau, and F. Chau, (2024). Social media sentiment of hydrogen fuel cell vehicles in China: Evidence from artificial intelligence algorithms. Energy Econ., 133, 107564. https://doi.org/10.1016/j.eneco.2024.107564.

S. Wang, H. Jiang, B. Wang, J. Du, S. Wang, and L. Qin, (2024). A Technique for Detecting Hydrogen and Methane Using Refractive Index Sensitivity. Process Saf. Environ. Prot., 188, 781-792. https://doi.org/10.1016/j.psep.2024.05.131.

Y. Wang, Y. Dou, X. Liu, and Y. Lei, (2016). PR-ELM: Parallel regularized extreme learning machine based on cluster. Neurocomputing, 173, 1073-1081. https://doi.org/10.1016/J.NEUCOM.2015.08.066.

W. Wu, M. Zhao, Z. Ji, and M. Haroon, (2024). Evidence from China's shipping sector on the impact of fiscal measures in enabling a low-carbon economic transition. Heliyon, 10, 9, e30147. https://doi.org/10.1016/j.heliyon.2024.e30147.

J. Zeng and X. Jia, (2024). Systems Theory-Driven Framework for AI Integration into the Holistic Material Basis Research of Traditional Chinese Medicine. Engineering, 40, 28-50. https://doi.org/10.1016/j.eng.2024.04.009.

J. Zhang, Y. Liu, B. Lei, …, and K. Chen, (2023). GIONet: Global information optimized network for multi-center COVID-19 diagnosis via COVID-GAN and domain adversarial strategy. Comput. Biol. Med., 163, May, 107113. https://doi.org/10.1016/j.compbiomed.2023.107113.

O. V. Zhdaneev and K. N. Frolov, (2024). Technological and institutional priorities of the oil and gas complex of the Russian Federation in the term of the world energy transition. Int. J. Hydrogen Energy, 58, 1418-1428. https://doi.org/10.1016/j.ijhydene.2024.01.285.

X. Zhu, C. H. Ho, and X. Wang, (2020). Application of Life Cycle Assessment and Machine Learning for High-Throughput Screening of Green Chemical Substitutes. ACS Sustain. Chem. Eng., 8, 30, 11141-11151. https://doi.org/10.1021/ACSSUSCHEMENG.0C02211.

Downloads

Published

06-05-2025

Issue

Section

Research Articles

How to Cite

Magazzino, C., & Haroon, M. . (2025). AI-Based Modelling and Processing Technologies for Hydrogen Creation. Journal of Sustainability, 1(1). https://doi.org/10.55845/jos-2025-1112
Received 16-03-2025
Accepted 01-05-2025
Published 06-05-2025

Similar Articles

1-10 of 12

You may also start an advanced similarity search for this article.